About Us


Additive manufacturing, bioprint, bioprinter, scaffold, organs, tissues.


In a last decade has additive manufacturing passed a long way, where was reached an impressive advance in rapid prototyping technology of fabrication. From plastic and ceramic materials through metals to at the moment most interesting technology of bioprint, where the material which is used for building, directly consist of human tissues. Organ printing, which is based on computer-aided 3D tissue engineering, offers the wide range for research and development in this area. This article summarizes the present advance in this new and not entirely explored field of bio-additive manufacturing. With the help of this technology can be produced the real 3D models of organs and tissues, that should help surgeons in preoperative planning or can be used like spare “parts” for transplantations. The main emphasis is placed on tissue engineering technology which has the best assumptions to solve transplantation issues. Also this article includes the comparison of devices and materials which are possible to engage within the bio-manufacturing.


Acta Mechanica Slovaca. Volume 17, Issue 1, Pages 52 – 59, ISSN 1335-2393


  3D Bioprinters – Future of Implants Biofabrication


[1] Bourell, D. L., Leu, M. C., Rosen, D. W. (2009). Roadmap for Additive Manufacturing, Identifying the Future of Freeform Processing, University of Texas.

[2] Yeong, W. Y., Chua, Ch. K., Leong, K. F. and Chandrasekaran, M. (2004). Rapid prototyping in tissue engineering: challenges and potential, TRENDS in Biotechnology Vol.22 No.12 December.
[3] Lantada, A. D., Morgado, L. P., (2012). Rapid prototyping for biomedical engineering: current capabilities and challenges, Annu. Rev. Biomed. Eng.
[4] Rosen, D. W. Design For Additive Manufacturing: A Method To Explore Unexplored Regions Of The Design Space, The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology.
[5] Jun, M. B. G. (2009). Rapid prototyping, solid free form fabrication and additive manufacturing, Mechanical Engineering, University of Victoria.
[6] Additive fabrication, [Cited on 2013-03-10], available at:<http://www.custompartnet.com/wu/additive-fabrication>
[7] Wüst, S., Müller, R. and Hofmann, S. (2011). Controlled Positioning of Cells in Biomaterials—Approaches Towards 3D Tissue Printing, Journal of Functional Biomaterials

ISSN 2079-4983.
[8] Bioprinter. [Cited on 2013-03-10], available at: <http://forgacslab. missouri.edu/bioprinter.html>
[9] A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. [Cited on 2013-03-10], available at: <http://www.sciencedirect.com/science/article/pii/S0142961212004899>

[10] Mironov, V., Boland, T., Trusk, T., Forgacs, G. and Markwald, R. R. (2003). Organ printing: computer-aided jet-based 3D tissue engineering, TRENDS in Biotechnology Vol.21 No.4 April.

[11] Kim, G. H., Son, J. G. (2008). 3D polycarprolactone (PCL) scaffold with hierarchical structure fabricated by a piezoelectric transducer (PZT)-assisted bioplotter, Applied Physics A, Springer-Verlag.
[12] HOLLISTER, S. J. (2005). Porous scaffold design for tissue engineering, Nature Publishing Group.
[13] Murphy, V.S., Skardal, A., Atala, A. (2012). Evaluation of hydrogels for bio-printing applications, Society for Biomaterials, published online 31. August.
[14] Injectable and thermosensitive PLGA-g-PEG hydrogels containing hydroxyapatite: preparation, characterization and in vitro release behavior. [Cited on 2013-03-10], available at:<http://www.ncbi.nlm.nih.gov/pubmed/22456931>

[15] Bioprinting. [Cited on 2013-03-10], available at: <http://www.explainingthefuture.com/bioprinting.html>
[16] The Amazing History and Future of Bioprinting. [Cited on2013-03-10], available at: <http://www.webpronews.com/the-amazing-history-and-future-of-bioprinting-infographic-2012-07>

[17] Traction Stresses and Translational Distortion of the Nucleus during Fibroblast Migration on a Physiologically Relevant ECM Mimic. [Cited on 2013-03-10], available at: <http://www.sciencedirect.com/science/article/pii/S0006349509006018#>
[18] Tsang, V. L., Chen, A. A, Cho, L.M., Jadin, K. D., Sah, R. L., et al. (2007). Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels, The FASEB Journal vol. 21 no. 3, March.
[19] Fedorovich, N. E., Alblas, J., Henning, W. E., Öner, F. C. and Dhert, W. J. A. (2011). Organ printing: the future of bone regeneration?, Trends in Biotechnology, Vol. 29, No. 12, December.
[20] Moroni, L., Wijn, de J., Blitterswijk, van C. A. (2004). 3D Plotted Scaffolds for Tissue Engineering: Dynamical Mechanical Analysis, European Cells and Materials Vol. 7. Suppl. 1.
[21] Vozda, M., Sekora, M., Penhaker, M. “ Precise Temperature Stabilizing System of Liquids for the Purpose Biomedical Applications” In Journal Electronics and Electrical Engineering, vol.18, Iss 10., pp. 29 – 32, Received 3rd MArch 2012, Accepted 12th May 2012; Published October 2012. ISSN 1392 – 1215 (print), ISSN 2029-5731 (online)
[22] Sidun, J., Dabrowski, J.R.: Bone Ingrowth Processes on Porous Metalic Implants, 2009, Solid State Phenomena, 147-149, 776 <http://www.scientific.net/SSP.147-149.776>

Latest Issue

ams 2 2016


Guests Online

We have 30 guests and no members online