About Us

KEY WORDS

Milling, gear accuracy, near-dry machining, sustainable machining.

ABSTRACT

This paper highlights the importance of the sustainable machining technologies in achieving sustainable development objectives. The machining processes constitute a major manufacturing activity that contributes to the growth of the global economy. The research and the development in the machining processes have improved machining performances through advanced tool materials, higher productivity and quality, while the environmentally and the health-friendly technologies are becoming increasingly important for achieving cleaner, healthier, and safer machining. In the context of the sustainable machining, the case study presents the influence of the environment-friendly techniques use on the accuracy of 16MnCr5 gear with small modulus, manufactured by milling.

CITATION INFORMATION

Acta Mechanica Slovaca. Volume 16, Issue 1, Pages 58 – 65, ISSN 1335-2393

DOWNLOAD

  Research of Environment-Friendly Techniques Influence on Accuracy of Gear Processing in Context of Sustainable Machining by Near Dry Machining

REFERENCES

[1] Byrne G., Dornfeld D., Denkena B., Advanced Cutting Technology, Annals of the CIRP, vol. 52, no. 2, 2003, p. 483-507.

[2] Byrne G., Scholta E., Environmentally Clean Machining Processes – A Strategic Approach, Annals of the CIRP, vol. 42, no. 1, 1993, p. 471-474.
[3] Dahmus I.B., Gutowski T.G., An environmental analysis of machining, Proceedings of IMECE, 2004, p. 1-10.
[4] El-Hossainy T.M., Tool Wear Monitoring under Dry and Wet Machining, Materials and Manufacturing Processes, vol. 16, no. 2, 2001, p. 165-176.
[4] El-Tamimi A.M., El-Hossainy T.M., Investigating the Tool Life, Cutting Force Components and Surface Roughness of AISI 302 Stainless Steel Materials under Oblique Machining, Materials and Manufacturing Processes, vol. 23, no. 4, 2008, p.427-438.
[5] Fernández Pariente I., Guagliano M., Influence of Shot Peening Process on Contact Fatigue Behavior of Gears, Materials and Manufacturing Processes, vol. 24, no. 12, 2009, p. 1436-1441.
[6] Fratila D., Evaluation of near-dry machining effects on gear milling process efficiency, Journal of Cleaner Production, vol. 17, no. 9, 2009, p. 839-845.
[7] Ganesha Prasad M.S., Drakshayani D.N., Studies on Passive Cooling Techniques in Dry Machining, Materials and Manufacturing Processes, vol. 25, no. 6, 2010, p. 360-369.
[8] Graham I., Dom K., Going Dry, Manufacturing Engineering, 124(1), 2000, p. 72-78.
[9] Grzesik W., Dry and Semi-Dry Machining, Advanced Machining Processes of Metallic Materials, 2008, p. 226-245.
[10] Kaebernick H., Kara S., Sun M., Sustainable product development and manufacturing by considering environmental requirements, Robotics and Computer-Integrated Manufacturing, vol. 19, no. 6, 2003, p. 461- 468.
[11] Kalhofer E., Dry machining principles and applications. Proceedings of the 2nd Seminario International de Alta Tecnologia UNIMEP. Julho, Brazil: Santa Barbara D’Oeste, SP, 1997.
[12] Kopac J., New achievements in cutting techniques, Journal of Mechanical Engineering, vol. 43, no. 34, 1997, p. 143-52.
[13] Kundrák J., Mamalis A.G., Gyáni K., Markopoulos A., Environmentally Friendly Precision Machining, Materials and Manufacturing Processes, vol. 21, no. 1, 2006, p. 29 – 37.
[14] Marksberry P.W., Jawahir I.S., A comprehensive tool-wear/tool-life performance model in the evaluation of NDM for sustainable manufacturing, International Journal of Machine
Tools and Manufacture vol. 48, no. 7-8, 2008, p. 878-886.
[15] Marksberry P.W., Micro-flood (MF) technology for sustainable manufacturing operations that are coolant less and occupationally friendly, Journal of Cleaner Production, vol.
15, no. 10, 2007, p. 958-971.
[16] Paulo Davim J., Sreejith P.S., Silva J., Turning of Brasses Using Minimum Quantity of Lubricant (MQL) and Flooded Lubricant Conditions, Materials and Manufacturing Processes,
vol. 22, no. 1, 2007, p. 45-50.
[16] Pusavec F., Krajnik P., Kopac J., Transition to sustainable production – Part I: application on machinig technologies, Journal of Cleaner Production, vol. 18, no. 2, 2010, p. 174-
184.
[17] Pusavec F., Kramar D., Krajnik P., Kopac J., Transitioning to sustainable production – part II: evaluation of sustainable machining technologies, Journal of Cleaner Production, vol.18, no.12, 2010, p. 1211-1221.

[18] Rahman M., Kumar A.S., Salam M.U., Experimental evaluation on effect of minimal quantity lubricant in milling, International Journal of Machine Tools & Manufacture, vol. 42,
no. 1, 2002, p. 539-547.
[19] Rajemi M.F., Mativenga P.T., Aramcharoen A., Sustainable machining: selection of optimum turning conditions based on minimum energy considerations, Journal of Cleaner Production, vol. 18, no. 11-12, 2010, p. 1059-1065.
[20] Rama Kotaiah K., Srinivas J., Babu K.J., Srinivas K., Prediction of Optimal Cutting States during Inward Turning: An Experimental Approach, Materials and Manufacturing Processes, vol. 25, no. 6, 2010, 432-441.
[21] Ramesh S., Karunamoorthy L., Palanikumar K., Surface Roughness Analysis in Machining of Titanium Alloy, Materials and Manufacturing Processes, vol. 23, no. 2, 2008,

p. 174-181.
[22] Ramesh S., Karunamoorthy L., Palanikumar K., Fuzzy Modeling and Analysis of Machining Parameters in Machining Titanium Alloy, Materials and Manufacturing Processes, vol.
23, no. 4, 2008, p. 439-447.
[23] Sayit E., Aslantas K., Çiçek A., Tool Wear Mechanism in Interrupted Cutting Conditions, Materials and Manufacturing Processes, vol. 24, no. 4, 2009, p. 476-483
[24] Shie J.R., Optimization of Dry Machining Parameters for High-Purity Graphite in End- Milling Process by Artificial Neural Networks: A Case Study, Materials and Manufacturing
Processes, vol. 21, no, 8, 2006, p. 838- 845.
[25] Sokovic M., Mijanovic K., Ecological aspects of cutting fluids and its influence on quantifiable parameters of the cutting process, Journal of Material Processing Technology no. 9,
2001, p. 181-189.
[26] Tan X.C., Liu F., A decision-making framework model of cutting fluids selection for green manufacturing, Journal of Material Processing Technologies, no. 129, 2002, p. 467-470.
[27] Tosun N., Huseyinoglu M., Effect of MQL on Surface Roughness in Milling of AA7075-T6, Materials and Manufacturing Processes, vol. 25, no. 8, 2010, p. 793-798.
[28] Weinert K., Inasaki I., Sutherland J.W., Wakabayashi T., Dry machining and minimum quantity lubrication, CIRP Annals-Manufacturing Technology, vol. 53, no. 2, 2002,

p. 511-537.
[29] Westkämper E., Alting A., Life Cycle management and assessment: approaches and visions towards sustainable manufacturing (keynote paper), CIRP Annals – Manufacturing
Technology, vol. 49, no. 2, 2000, p. 501-526.
[30] Pigosso D.C.A, Zanette T., Filho A.G., Ometto A.R., Rozenfeld H., Ecodesign methods focused on remanufacturing. Journal of Cleaner Production, vol. 18, no. 6, 2010, p. 21-31.
[31] Young P., Byrne G., Cotterel M., Manufacturing and Environment, International Journal of Advanced Manufacturing Technology, no. 13, 1997, p. 488-493.

Latest Issue

ams 2 2016

Download

Guests Online

We have 60 guests and no members online