About Us


Hard Turning, Cutting Force, Temperature, Advant Edge Modelling.


Hard machining, as attractive replacement for many rough and finish grinding operation, generates high cutting forces and temperature that enhance tool wear when act together. Therefore, the tool geometry and machining parameters have to be carefully optimized for a given material. Because of high cost and time consuming experimental work

up-to-date advanced software for modeling and simulation brings quick and adequate solution. The aim of this contribution is to study the influence of cutting parameters and material hardness on accompanying phenomena when hard turning process with mixed oxide ceramic inserts. Hardened steel with different hardness level of HRC 46, HRC 55 and HRC 60, respectively, has been employed in modeling and trials. In order to better understand dynamics of cutting hardened steel, investigation has been performed making use finite element simulation in two dimension, and experimental analysis of cutting force. The potentiality of the model as well as the experimental results are compared and discussed.


Acta Mechanica Slovaca. Volume 15, Issue 3, Pages 14 – 21, ISSN 1335-2393


  Outline of FEM Simulation and Modelling of Hard Turning Process


[1] Mackerle, J. (2003). Finite element analysis and simulation of machining: an addendum a bibliography (1996-2002). Int. J Mach Tools Manuf, vol. 43, pp. 103-114

[2] Mackerle, J. (1999). Finite element analysis and simulation of machining: a bibliography (1976-1996). J Mater Process Technol, vol. 86, pp. 17-44
[3] Tonshoff, H.K., Arendt, C., Ben Amor, R. (2000). Cutting of hardened steel. Annals of the CIRP, vol. 49, no.2, pp. 547-566
[4] Arrazola, P. J., et al. (2005). Serrated chip prediction in numerical cutting models. 8th CIRP Workshop on Modeling of Machining Operations 5, pp. 115-122
[5] Mamalis, A.G., Kundrak, J., et al. (2003). Thermal modeling of surface grinding using implicit finite element techniques. Int. Journal of Advanced Manufacturing Technology,
vol. 12, pp. 929-934
[6] Mamalis, A.G., Kundrak, J., et al. (2007). On the finite element modeling of high speed hard turning. Int. Journal of Advanced Manufacturing Technology, vol. 16
[7] Guo, Y.B., Liu, C.R. (2002). 3D FEA Modelling of hard turning. ASME Journal of Manufacturing Science and Engineering, vol. 124, pp. 189-196
[8] Ng E.-G., Aspinwall, D.K. (2002). Modeling of hard part machining. J Mater Process Technol , vol.127, pp. 222-229
[9] Beňo, J., Maňková, I. (2004). Technological and material factors of machining. Vienala Press, Košice, (in Slovak). ISBN 80-7099-701-X, 418
[10] Leopold, J., Neugebauer, R. (2004). A finite element study of the effect of friction on chip- and burr- formation in orthogonal metal cutting. 7th CIRP Int. Workshop on Modeling
of Machining Operations 5, pp. 125-132
[11] Maňková, I., Beňo, J. (2007). Introduction to FEM simulation of cutting temperature when turning of AISI 1045 steel. Production Process in Mechanical Engineering – Research
Reports, Krakow, pp. 105-110
[12] Maňková, I., Marková, G. (2009). Comparative assessment of hard turned surfaces microgeometry by 2D and 3D parameters. Acta Mechanica Slovaca, vol.13, pp. 86-93
[13] Zebala, W., Slusarczyk, L. (2006). Aspect of FEM simulation of cutting process. Production Process in Mechanical Engineering – Research Reports, Krakow, pp. 69-74
[14] Demeč, P., Svetlík, J.: (2009) Virtual Machining and its Experiemnatl Verification. Acta Mechanica Slovaca, ISSN 1335-2393, 13, No 4: 68-73

Latest Issue

ams 2 2016


Guests Online

We have 70 guests and no members online