About Us


deep drawing, Al alloys, sheet metal, numerical simulation


The aim of this work is to create material model for aluminum material AW 5754 H11 for numerical simulation, which is widely used in automotive industry. For purpose of verification material model the deep drawing cup test was carried up, and measured parameters were punch force, thickness distribution and ear profile. Results from numerical simulation were validated by real experiment with regard to predict accuracy in changes of thickness and ear profile.


Acta Mechanica Slovaca. Volume 20, Issue 2, Pages 32 – 40, ISSN 1335-2393


  Material Model of AW 5754 H11 Al Alloy for Numerical Simulation of Deep Drawing Process


[1] Zhou, J., Wang, B., Lin, J., Fu, L. (2013). Optimization of an aluminum alloy anti-collision side beam hot stamping process using a multi-objective genetic algorithm. Archives of Civil and Mechanical Engineering, 13, 401-411.
[2] Abe, Y., Ohmi, T., Mori, K., Masuda, T. (2014). Improvement of formability in deep drawing of ultra-high strength steel sheet by coating of die. Journal of Mechanical Processing Technology, 214, 1838-1843.
[3] Miller, W.S., [et al.] (2000). Recent development in aluminium alloys for the automotive industry. Material Science and Engineering, A280, 37-49.
[4] Aluminum in cars: Unlocking the light-weighting potential, from http://www.european-aluminium.eu/wp-content/uploads/2013/10/.
[5] Arwidson, C. (2005). Numerical Simulation of Sheet Metal Forming for High Strenght Steels. Luleâ University of Technology. Sweeden.
[6] Slota, J., Gajdoš, I., Olexová, M. (2009). Numerická simulácia procesu hlbokého ťahania a jej verifikácia. MMaMS, 175-178.
[7] Zhou, J., Wang, B., Jin, J., Fu, L., Ma, W. (2014). Forming defects in aluminum alloy hot stamping of side-door impact beam. Transactions of Nonferrous Metals Society of China, 24, 3611-3620.
[8] Banabic, D., Dannenmann, E. (2001). Prediction of the influence of yield locus on the limit strains in sheet metals. Materials Processing Technology, 273-281.
[9] Banabic, D., Bunge, H.J., Pöhlandt, K., Tekkaya, A.E. (2000). Formability of Metallic Materials. Springer, Verlag Berlin Heidelberg.
[10] Banabic, D., [et al.] (2004). FLD teoretical model using a new anisotropic yield criterion. Materials Processing Technology, 273-281.
[11] Yuguo, A., Vegter, H. [et al.] (2011). A novel yield locus description by combining the Taylor and the relaxed Taylor theory for sheet steels. Internationl Journal of Plasticity, 356-368.
[12] Barlat, F., [et al.] (1991). A six-component yield function for anisotropie material. Plasticity 7, 125-137.
[13] Hill, R. (1948) A theory of the yielding and plastic flow of anisotropic metals. Proc. Roy. Soc., London.
[14] Marciniak Z., Duncan J. L., Hu S.J., (2002). Mechanics of sheet metal forming. Proc. Roy. Soc., London,
[15] PAM-STAMP 2G 2009 – User`s guide. © 2009 ESI Group
[16] Banabic D. (2010). Sheet metal forming processes. Springer, Verlag Berlin Heidelberg.
[17] Tomáš M. (2011). Numerická simulácia procesu hlbokého ťahania. Transfér inovácií, 10/2011, 129-132.
[18] Bruschi S., [et al.] (2014). Testing and modelling of material behaviour and formability in sheet metal forming. CIRP Annals - Manufacturing Technology, 63, 727-749.
[19] Vegter H., Boogard A. H. (). A plane stress yield function for anisotropic sheet material by interpolation of biaxial stress states.
[20] Vegter H., An Y., [et al.] (2003). Characterisation and modelling of the plastic material behavior and its application in sheet metal forming simulation. COMPLAS VII, 1-20.
[21] Nový J., Vaché V., Sobotka J. (2013). Influence of used yield function in deep drawing simulation of highly anisotropic aluminum alloy. IDDRG 2013 Conference, 273-277.

Latest Issue

ams 2 2016


Guests Online

We have 25 guests and no members online