Volume 19, Issue No.1

KEY WORDS

Denitrification, desulphurization, gypsum suspension (slurry), ammonium ions.

ABSTRACT

The article deals with the proposed methodology for the removal of ammonium ions from the gypsum slurry in the Vojany Slovakia (EVO) power plant. The suspension (slurry) is formed as a by-product of the treatment process of the flue gas desulphurization and denitrification, when ammonia water is being fed to the flue gas. Most of the ammonia, which does not participate in the chemical reaction, escapes together with the flue gas into the absorber of the desulfurization device. By washing such flue gases, large quantities of gypsum slurry are created, which contain ammonium ions. Gypsum slurry is admixed to the “stabilizer” in its production, where it comes into contact with the adhesive agent (CaO), whilst releasing ammonia. Based on the analysis of the current state of denitrification and desulphurization at EVO Vojany, a methodology, more precisely described in the article, was proposed for the removal of ammonium ions from the gypsum slurry.

CITATION INFORMATION
Acta Mechanica Slovaca. Volume 19, Issue 1, Pages 36–41, ISSN 1335-2393

DOWNLOAD

 Removal of Ammonium Ions from Gypsum Slurry in the ...

REFERENCES

[1] Ahn, J., Kim, H. J., Choi, K. S. 2010. Oxy-fuel combustion boiler for CO2 capturing: 50 kW class model test and numerical simulation, J. Mech. Sci. Technol., 24 (10): p. 2135-2141, DOI: 10.1007/s12206-010-0711-y.

[2] Čarnogurská, M., Příhoda, M., Pyszko, R., Širillová, Ľ., Palkóci, J. 2014. The influence of calcite on the ash flow temperature for semi-anthracite coal from Donbas district. Chem. Process Eng. 35 (4): p. 515-525, DOI: 10.2478/cpe-2014-0038.

[3] Čarnogurská, M., Příhoda, M., Koško, M., Pyszko, R. 2012. Verification of pollutant creation model at dendromasa combustion. J. Mech. Sci. Technol., 26 (9): p. 4161-4169, DOI: 10.1007/s12206-011-0913-y.

[4] Čarnogurská, M., Příhoda, M., Brestovič, T. 2011. Modelling of nitrogen oxides formation applying dimensional analysis. Chem. Process Eng., 32 (3): p. 175-184, DOI: 0.2478/v10176-011-0013-7.

[5] Javorský, P., Fojtíková, D., Kašal, V. 1987. Chemické rozbory v zemědělských laboratořích. Ministerstvo zemědělství a výživy ČSR, Praha.

[6] Kočanová, S., Lukáč, L. 2014. The impact of the composition of the wood gas to emissions after combustion of wood gas. The Holistic Approach to Environment, 4 (3): p. 111-117.

[7] Moroń, W., Czajka, K., Ferens, W., Babul, K., Szydełko, A., Rybak, W. 2013. NOx and SO2 emission during OXY-coal combustion. Chem. Process Eng., 34 (3), p. 337–346. DOI: 10.2478/cpe-2013-0027.

[8] Pavlov, R. 2007. Odstraňovanie amónnych iónov zo sadrovcovej suspenzie v EVO Vojany v procese odsírenia. Diplomová práca. SjF TU v Košiciach.

[9] Sambor, A., Szymanek. A. 2012. Investigation of the distribution of chemical components in selected landfill layers and fly ash fractions. Chem. Process Eng., 33 (2): p. 221–229, DOI: 10.2478/v10176-012-0019-9.

[10] Wang, W., Luo, Z., Shi Z., Cen, K. 2011. Experiments and Modelling of Ash Mineral Evolution in Burning High-Sulphur Coal with Lime. Energy Fuels, 25(1): p. 130-135. DOI: 10.1021/ef1014346.

[11] Szlek, A., Jandačka, J., Nosek, R. 2010. Numerical modelling of coal combustion in domestic boiler. Archivum combustionis, 30 (3): p. 167-175.

[12] Zavila, O., Bojko, M., Kozubková, M., Danihelka, P., Baudišová, B., Maléřová, L. Čarnogurská, M. 2014. CFD Analysis of the Influence of Meteorological Conditions on Motion of Ammonia, Acta Mechanica Slovaca, (18) 1: p. 64-70.

Latest Issue

ams 2 2016

Download