Volume 19, Issue No.3

KEY WORDS

Ising–Heisenberg diamond chain; magnetocaloric effect; Landé g-factor; decoration-iteration transformation; exact results

ABSTRACT

The symmetric spin-1/2 Ising-Heisenberg diamond chain with different Landé g-factors of the Ising and Heisenberg spins is exactly solved by combining the generalized decoration-iteration transformation and transfer-matrix method. The ground state of the system and the magnetocaloric effect during the adiabatic (de)magnetization are particularly examined. It is evidenced that the considered mixed-spin diamond chain exhibits the enhanced magnetocaloric effect during the adiabatic (de)magnetization in the vicinity of field-induced phase transitions as well as in the zero-field limit when the frustrated phase constitutes the zerofield ground state. The cooling efficiency of the system depends on whether it is macroscopically degenerate in these parameter regions or not.

CITATION INFORMATION

Acta Mechanica Slovaca. Volume 19, Issue 3, Pages 46–53, ISSN 1335-2393

DOWNLOAD

  Magnetocaloric Effect in the Symmetric Spin-1/2 Diamond Chain with ...

REFERENCES

[1] Mattis, D.C. (1993). The Many-body Problem. World Scientific, Singapore

[2] Hida, K., Takano, K., Suzuki, H. (2009). Finite Temperature Properties of Mixed Diamond Chain with Spins 1 and 1/2. J.Phys. Soc. Jpn., 78, 084716.

[3] Rojas, O., de Souza, S.M., Ohanyan, V., Khurshudyan, M. (2011). Exactly solvable mixed-spin Ising-Heisenberg diamond chain with biquadratic interactions and single-ionanisotropy. Phys. Rev. B, 83, 094430

[4] Čanová, L., Strečka, J., Lučivjanský, T. (2009). Exact solution of the mixed spin-1/2 and spin-S Ising-Heisenberg diamond chain. Condens. Matter Phys., 12, 353.

[5] Ananikian, N., Strečka, J., Hovhannisyan, V. (2014). Magnetization plateaus of an exactly solvable spin-1 Ising-Heisenberg diamond chain. Solid State Commun., 194, 48

[6] Gálisová, L. (2013). Magnetic properties of the spin-1/2 Ising-Heisenberg diamond chain with the four-spin interaction. Phys. Stat. Solidi B, 250, 187.

[7] Lisnyi, B., Strečka, J. (2014). Exact results for a generalized spin-1/2 Ising-Heisenberg diamond chain with the secondneighbor interaction between nodal spins. Phys. Stat. Solidi B, 251, 1083.

[8] Gálisová, L. (2014). Magnetocaloric effect in the spin-1/2 Ising-Heisenberg diamond chain with the four-spin interaction. Condens. Matter Phys., 17, 13001.

[9] Abgaryan, V.S, Ananikian, N.S., Ananikyan, L.N., Hovhannisyan, V. (2015). Entanglement, magnetic and quadrupole moments properties of the mixed spin Ising-Heisenberg diamond chain. Solid State Commun., 203, 5.

[10] Kikuchi, H., Fujii, Y., Chiba, M., Mitsudo, S., Idehara, T., Tonegawa, T., Okamoto, K., Sakai, T., Kuwai, T., Ohta H. (2005). Experimental Observation of the 1/3 Magnetization Plateau in the Diamond-Chain Compound Cu3(CO3)2(OH)2. Phys. Rev. Lett., 94, 227201.

[11] Rule, K. C., Wolter, A.U.B., Sullow, S., Tennant, D. A., Brühl, A., Kohler, S., Wolf, B., Lang, M., Schreuer, J. (2008). Nature of the
Spin Dynamics and 1/3 Magnetization Plateau in Azurite. Phys. Rev. Lett., 100, 117202

[12] Syozi, I. (1972). Phase Transition and Critical Phenomena. Academic Press, New York, pp. 269–329

[13] Strečka, J. (2010). On the Theory of Generalized Algebraic Transformation. LAP LAMBERT Academic Publishing, Saarbrucken, Germany

[14] Baxter, J. R. (1982). Exactly Solved Models in Statistical Mechanics. Academic Press, New York, pp. 32–38.

[15] Zhu, L., Garst, M., Rosh, A., Si, Q. (2003). Universally Diverging Grüneisen Parameter and the Magnetocaloric Effect Close to Quantum Critical Points. Phys. Rev. Lett., 99, 066404

Latest Issue

ams 2 2016

Download